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ABSTRACT

Aziz Sancar, Nobel Prize winning Turkish scientist, made several discoveries which had a major impact on molecular sciences, particularly 
disciplines that focus on carcinogenesis and cancer treatment, including molecular pathology. Cloning the photolyase gene, which was the 
initial step of his work on DNA repair mechanisms, discovery of the “Maxicell” method, explanation of the mechanism of nucleotide excision 
repair and transcription-coupled repair, discovery of “molecular matchmakers”, and mapping human excision repair genes at single nucleotide 
resolution constitute his major research topics. Moreover, Sancar discovered the cryptochromes, the clock genes in humans, in 1998, and this 
discovery led to substantial progress in the understanding of the circadian clock and the introduction of the concept of “chrono-chemoterapy” 
for more effective therapy in cancer patients. This review focuses on Aziz Sancar’s scientific studies and their reflections on molecular pathology 
of neoplastic diseases. While providing a new perspective for researchers working in the field of pathology and molecular pathology, this review 
is also an evidence of how basic sciences and clinical sciences complete each other.
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INTRODUCTION

Henrich Rohrer, Nobel Prize winning physicist, once 
said that science requires constantly walking a tightrope 
between faithful belief and impulse to question, between 
common knowledge and creativity, between the defense of 
old territory and the decision to leave established grounds, 
between bias and impartiality, between expertise and fresh 
minds, between ambition and passion, between arrogance 
and self-confident conviction – in short, between human 
weakness and scientific standards, between today and 
tomorrow (1). 

Scientists/researchers who have the patience to walk this 
tightrope are more likely to make discoveries that change 
the world, and one of them is Aziz Sancar, who was 
awarded the Nobel Prize in Chemistry with Tomas Lindahl 
and Paul Modrich in 2015 for their conceptual studies on 
DNA repair (2). Aziz Sancar was born in Savur, a small 
town in Southeast Turkey, in 1946. His fascination with 
biochemistry started in his second year of medical school 
when he learned about the DNA double helix for the first 
time (3). During his medical education at the Istanbul 

University Faculty of Medicine, he had the chance to work 
with excellent researchers including Dr. Mutahhar Yenson 
and Dr. Muzaffer Aksoy (4). After practicing in Mardin for 
about 2 years as a physician, he won a NATO fellowship 
and attended a PhD program at Johns Hopkins University 
in 1971. However, life had other plans for Sancar, and he 
left Johns Hopkins and returned to Turkey in June 1972. 
After a short break, he went to the United States in 1973, 
and received his PhD in 1977 at the University of Texas at 
Dallas (3, 4). His research journey officially began while he 
was a PhD student. The road to success was rocky but in the 
end, he won the Nobel Prize, one of the most prestigious 
awards in the world.

Sancar’s discoveries (5-13) (Table I) had a major impact 
on several scientific disciplines, particularly disciplines 
that focus on carcinogenesis and cancer treatment. As 
molecular pathology, a relatively new discipline that 
incorporates the morphology and molecular alterations of 
diseases, is among those disciplines, here we discussed the 
impact of Aziz Sancar’s studies on the molecular pathology 
of neoplastic diseases. 
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FIRST SUCCESS and the LONGEST JOURNEY: 
CLONING the PHOTOLYASE GENE

The discovery of the photolyase enzyme, known as 
SANCAR’s enzyme in the literature, has taken 40 years 
of Sancar’s scientific life, and is very important since it 
contains the first information leading to the understanding 
of DNA damage repair in humans. The photolyase enzyme 
was first described in 1958 by Sancar’s mentor Dr. Rupert 
by observing the invigorating effect of blue light on bacteria 
(14). Dr. Rupert (14) showed that ultraviolet (UV) light 
can kill bacteria by damaging its DNA, and also revealed 
the presence of an enzyme that repairs DNA damage in 
visible light using blue light energy. UV was able to damage 

bacterial DNA by converting two adjacent pyrimidines, 
including thymines, into a CPD (cyclobutene pyrimidine 
dimer), while photolyase enzyme was helping to convert 
the abnormal thymine dimer into two normal thymine 
molecules using blue light energy (15-17). However, Rupert 
and his team could not purify the enzyme due to the low 
level of enzyme content in bacteria, and therefore could 
not demonstrate how the enzyme converted sunlight into 
chemical energy, in other words how it repaired DNA 
damage caused by UV exposure.

Sancar has achieved great success by exploring the working 
principles and mechanism of photolyase and has pioneered 
the understanding of DNA repair mechanisms. After 

Table I: Overview of Sancar’s greatest scientific discoveries. 

Discovery Highlights

Cloning the photolyase gene

•	 Sancar’s mentor, Dr. Claud S. Rupert, (14) discovered photolyase in 1958 (“the 
beginning of the scientific field of DNA repair” as referred to by Sancar himself in his 
Nobel lecture (65)).

•	 Almost 20 years after this discovery, Sancar and Rupert (5) succeeded in cloning 
the photolyase gene, and this was the initial step of Sancar’s work on DNA repair 
mechanisms.

Discovery of the “Maxicell” 
method

•	 The maxicell method, discovered by Sancar (6), is used to identify plasmid-encoded 
proteins that use a mutant strain of E. coli that is defective in repairing DNA damage. 

Explanation of the 
mechanism of nucleotide 
excision repair in E. coli and 
humans

•	 While cloning the excision repair genes uvrA, uvrB, and uvrC, Sancar and Rupp 
(7) found that UvrABC nuclease made dual incisions and named the enzyme “ABC 
excinuclease”. 

•	 Afterwards, Sancar  and colleagues (8) discovered that dual incisions made during 
nucleotide excision repair in humans were different than in E. coli.

Transcription-coupled 
repair: 
“Yunus Emre Opus”

•	 Sancar and Selby (10) identified a factor that recognized and removed RNA 
polymerase from the damaged site while inducing the accumulation of the excision 
nuclease at the damage: TRCF (Transcription-Repair Coupling Factor). 

•	 Sancar describes this paper as his most aesthetically pleasing work, specifically as his 
“Yunus Emre Opus” (65). 

Discovery of “molecular 
matchmakers”

•	 While studying DNA repair mechanisms, Sancar and Hearst discovered a class of 
proteins, “molecular matchmakers”, that promotes formation of a stable DNA-protein 
complex (9). 

Excision repair map of the 
human genome at single 
nucleotide resolution:         
“Piri Reis map”

•	 Sancar and colleagues (11) mapped the sites of repair across the entire human 
genome, using XR sequencing and at single nucleotide resolution. 

•	 Sancar refers to this map as his Piri Reis map, while he describes it as the most 
satisfying accomplishment in his lab in the 2000s (4, 65). 

Cryptochrome and the 
Circadian clock

•	 In 1996, after reading an article about the circadian clock and jetlag in a flight 
magazine, Sancar began his studies on the circadian clock (4), showing that 
cryptochromes (named by Sancar himself) affect the clock (12,13), leading to several 
subsequent studies. 
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joining Dr. Rupert and his team, Sancar primarily aimed 
to clone the photolyase gene and obtain the enzyme in pure 
form. At this point, he first showed that the photo-activated 
photolyase can be transferred through the plasmids in the 
cell and that the plasmids can help in the replication process 
of this enzyme (18). Subsequently, using recombinant DNA 
(rDNA) technology, which was newly revived at that time, 
he produced a mutant E. coli clone that did not have the 
photolyase enzyme. Using this mutant form, he enabled 
E. coli that could not repair its DNA to use blue light, 
thanks to the photolyase enzyme carried by the plasmid. 
In other words, his team demonstrated that they could 
treat the mutant E. coli by placing the photolyase gene in 
the normal E. coli chromosome into the plasmid (5, 19). In 
the meantime, they were able to replicate photolyase gene 
many times using the plasmid and succeeded in obtaining 
abundant (100-fold amplification) amounts of this enzyme 
(5). Obtaining the enzyme easily and in abundance 
allowed them to investigate the repair mechanism of DNA 
damage by this enzyme using blue light. Therefore, in their 
subsequent studies, Sancar and colleagues (20-35) analyzed 
enzyme content and identified light-absorbing components 
and the working dynamics and revealed the 3D structure of 
the enzyme by crystallizing photolyases (36). 

Sancar continues to work on the photolyase enzyme, which 
covers the longest period of his scientific journey, and he 
has also searched for its equivalent in human beings. In 
fact, the photolyase enzyme is very important in terms of 
introducing the DNA repair mechanism as a discipline from 
the first years it was described. Could the presence of this 
enzyme in bacteria but not in humans be a limitation for 
humanity? While there is no clear answer for this question 
yet, some researchers have been studying the possible use 
of photolyase in mRNA-based gene therapy in humans 
(37, 38), and promising therapeutic agents containing 
photolyase have been reported to be used in the treatment 
of lesions triggered by UV rays (39, 40). These agents 
have been combined with thermostimulation in another 
study (41). However, the efficacy of these topical agents 
containing photolyase remains controversial and further 
investigation is needed to explore whether these agents are 
truly beneficial or not. 

DISCOVERY of the “MAXICELL” METHOD 

Maxicell is a method developed by Aziz Sancar and 
colleagues (6) to identify the proteins encoded by the 
bacterial plasmid. This method may be used to produce any 
protein, and thus, has taken its place in biochemistry and 
molecular biology practice as a viable genetic engineering 
and rDNA technology method. The method uses a mutant, 

non-photo reactivable E. coli strain that cannot repair DNA 
under experimental light. Following irradiation, in about 
6 hours, 80% of the bacterial chromosomal DNA breaks 
down and the irradiated mutant bacteria can no longer 
encode genes and therefore synthesize proteins. On the 
contrary, plasmids in the irradiated bacteria escape DNA 
damage due to their small size, and continue transcription 
and protein synthesis, and these gene products can be 
monitored using radioactive labeling (6). Although the 
irradiation limit that the plasmids can escape from is not 
known precisely, the maxicell method has been used up to 
10x106 plasmid size (42). 

While Sancar used this method especially in his studies 
on photolyase (5, 43-45) and DNA repair by endo/
exonucleases (46-48), many other researchers adopted this 
method, mainly in their studies that focused on viral and/or 
bacterial antigens (49-54). More importantly, the maxicell 
method has been used to produce some hormones (55, 56) 
and monoclonal antibodies (57-59), i.e., molecules that 
can be both used for diagnostic and treatment purposes. 
The maxicell method has also facilitated the purification 
of recombinant gene products and production of DNA 
fragments (duplicates) in a fast and easy way, representing 
an initial step for nucleic acid amplification methods such 
as polymerase chain reaction (PCR) and other quantitative 
techniques. Currently, PCR is among the most frequently 
used techniques in molecular pathology practice.

EXPLANATION of the MECHANISM of NUCLEOTIDE 
EXCISION REPAIR in E. COLI and HUMANS

DNA damage compromises the functional integrity of DNA 
(60) and occurs through multi-faceted mechanisms (60-
64). When it occurs, the cells can either repair the damage, 
or stop the progression of the cell cycle, or induce apoptosis 
(65). 

Nucleotide excision repair (NER) is a multi-component, 
multi-stage enzymatic system which includes recognition 
and elimination of a wide range of DNA damage (60- 
64). NER has been described in detail by Sancar et al. in 
prokaryotes and eukaryotes (60, 61, 65-67). All free-living 
organisms have excision repair genes (60, 66). The damage is 
removed as a 12-13 nucleotide-long oligomer in prokaryotes 
and a 24-32 nucleotide-long oligomer in eukaryotes (60, 63, 
68). NER starts with the recognition of the DNA damage, 
and then an oligomer, which has been formed by dual 
incision of the damaged area, is excised and released, and 
finally, the gap is filled by repair synthesis and ligation (60, 
67). These steps can be affected by many in vivo factors such 
as transcription, DNA replication, epigenetic modifications 
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DNA-damaging agents and it is characterized by deficient 
nucleotide excision repair, extreme sensitivity to sunlight, 
and early onset skin cancer in humans (60, 64, 65, 69). The 
risk of sunlight-induced skin cancers is greatly increased 
in XP patients, compared to the normal population (65, 
74). This finding is not surprising considering that excision 
repair in humans is the only known mechanism for 
eliminating UV-induced lesions (60).

NER deficiency has been demonstrated to be associated with 
non-skin cancer as well. In a study of breast cancer patients, 
mRNA expression levels of the NER genes have been shown 
to decrease in representative tumor samples compared to 
normal tissue samples by microarray analysis and these 
results have partially been confirmed at the protein level 
(73). Hence, the authors have suggested that NER deficiency 
may contribute to the development of sporadic breast 
cancer and that early-stage breast cancer may be sensitive 
to genotoxic chemotherapeutic agents such as cisplatin, 
the damage of which is eliminated by NER (73). Lu et al. 
(75) have reported that the polymorphisms of nucleotide 
excision repair genes ERCC1 rs11615 and ERCC5(XPG) 
rs17655 are related to increased risk of laryngeal cancer but 

and/or binding of regulatory proteins to DNA (69). Six 
proteins (XPA, RPA, XPC, TFIIH, XPG and XPF-ERCC1 
complex) are involved in excision repair in humans (60, 61, 
68, 70-72) (Figure 1). XPC, XPA and RPA are responsible 
for damage recognition, TFIIH (“Transcription factor II 
Human”) plays a role in DNA unwinding, and XPG and 
XPF-ERCC1 complex are responsible for 3’ and 5’ incisions 
(60). 

Repair of UVB-induced pyrimidine dimers is important 
for the prevention of skin cancer development by NER 
mechanisms (64). Loss of DNA repair capacity due to NER 
deficiency causes genomic instability which is a carcinogenic 
feature (73). NER has been the focus of interest in various 
studies, both for understanding the pathogenesis and for 
the discovery of targeted therapies. Defective NER has been 
associated with three rare autosomal recessive hereditary 
diseases: xeroderma pigmentosum (XP), Cockayne 
syndrome (CS), and photosensitive trichothiodystrophy 
(TTD) (64) (Figure 1). 

Among these three syndromes, pathologists often encounter 
XP while signing out skin resections. In XP, a defect in 
NER greatly increases the lethality and mutagenicity of the 

Figure 1: Basic steps of nucleotide excision repair (NER). While global genome repair (GGR) recognizes and repairs damages in the 
entire genome, transcription-coupled repair (TCR) operates on transcribed regions only (60, 83, 151). TFIIH: Transcription factor II 
Human. 
*POLH gene encodes DNA polymerase eta.
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82). Aziz Sancar and Christopher Selby (83) demonstrated 
that the progression of the RNA polymerase was stopped by 
DNA damage and caused the formation of a metastable RNA 
polymerase elongation complex at the damaged site, but 
this complex inhibited the repair rather than accelerating 
it in their study designed with damaged DNA, purified 
RNA polymerase and the UvrA, UvrB and UvrC proteins 
in E. coli. Consequently, they purified a protein in the 
form of translocase, which they named as “transcription-
repair coupling factor (TRCF)”, which recognizes the RNA 
polymerase complex, separates it from the damaged area, 
and enables UvrA to come to the damaged area. Thus, 
they succeeded in enlightening the mechanism by finding 
the missing factor in the system. They also discovered that 
this protein was encoded by the MFD (mutation frequency 
decline) gene, which was known to prevent UV-induced 
DNA damage (10, 84-87).

With this discovery, studies aiming to explain the 
mechanism of TCR in humans by various researchers 
including Aziz Sancar revealed that the damage recognition 
step was carried out by stopped RNA polymerase II 
complex, differently from global repair, and that this 
complex collected CSB translocase and the core excision 
repair factors except XPC to the damaged area and the next 
steps continued the same as in global repair (11, 60, 88-91) 
(Figure 1).

The reflections of the studies on this topic to the clinical 
medicine and molecular pathology can be grouped in 
three categories: 1) effects on cellular aging, carcinogenesis, 
apoptosis; 2) effects on cisplatin susceptibility and 
resistance, and 3) the potential use in targeted therapy.

There is evidence that the RNA polymerase II complex 
activates P53, initiates apoptosis, and acts as the primary 
sensor in all DNA damage response reactions (92). 
Mutations that inactivate TCR are known to cause Cockayne 
Syndrome in humans (11, 93). Mutations occurring in the 
CSB/ERCC2 gene encoding TRCF and some mutations 
that disrupt repair function in XP genes cause Cockayne 
Syndrome (85) (Figure 1). Damaged TCR system causes the 
DNA damage to stop transcription, resulting in impaired 
cell function, premature aging, and cell death. The effects 
of TCR damage differ from tissue to tissue depending on 
factors such as tissue metabolism, activity of antioxidant 
systems, and other repair systems. This explains the clinical 
picture seen in Cockayne Syndrome, which is the most 
well-known TCR-associated disorder, and is characterized 
by cellular aging in tissues consisting of non-proliferating or 
slow proliferating cells such as Schwann cells and neurons, 
resulting in progressive neurodevelopmental disorders. 

the biological effect of these polymorphisms is uncertain. 
Impaired NER has also been suggested to contribute to the 
development of head and neck squamous cell carcinomas 
(76). Defects in NER and base excision repair (BER), one 
of the main mechanisms of defense against oxidative DNA 
damage, have been reported to play a role in susceptibility 
to differentiated thyroid carcinoma (77). However, this 
effect appears to be due to some polymorphic genes with a 
weak overall effect (77). 

Nevertheless, defective NER mechanisms do not contribute 
to the pathogenesis of some cancer types. For example, a 
minor relationship has been found between colorectal 
cancer and XRCC3 (a recombination repair gene) 
polymorphism, but the significance of this finding remains 
to be explored and NER genes are not considered to be 
major players in colorectal carcinogenesis (74). In another 
study, Gaddameedhi et al. (71) have found that melanoma 
cells retain their capacity for NER, and suggested that NER 
loss probably does not contribute much to the progression 
of melanoma. 

In a study that measured the repair rates of UV-induced 
DNA damage during the differentiation of human embryo-
nal carcinoma cells to neurons and muscle cells, NER capac-
ity increased with the cellular differentiation level (62). 
Current standard anticancer therapies limit tumor growth 
by decreasing tumor proliferation or vascularization, but 
they have limited effects on cancer stem cells (78). A bet-
ter understanding of the biological effect of potential NER 
inhibitors should facilitate the development of optimal syn-
thetic killer combinations (78). This approach is promising 
not only for the individualized treatment of cancer patients 
with NER deficiency syndrome, but also in the treatment of 
patients with cancer in general (78).

TRANSCRIPTION-COUPLED REPAIR:                  
“YUNUS EMRE OPUS”

NER works more effectively in the transcribed regions of 
the genome. At this point, the “transcription coupled repair 
mechanism” comes into play. This mechanism, which is 
activated when RNA polymerase encounters DNA damage, 
does not allow the transcription to continue before the 
damage is repaired, provides faster repair of the damage, 
and reduces the harmful effects of transcription pause in 
the cell (79). The mechanism of this priority repair system, 
which is selective to the transcribed chain of the gene, had 
not been illuminated for a long time. In 1985, photodimers 
formed in the transcribed genes in various mammals and 
bacteria have been shown to be removed 5-10 times faster 
than the non-transcribed regions in the chromosome (80-
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ATP-dependent reaction, promotes their fusion, and then 
leaves the new complex to continue its processes (9, 101). 
Molecular-matchmakers are not only involved in DNA-
protein binding but also in other molecular interactions, 
such as RNA-protein, RNA-DNA and macromolecule-
small ligands (101).

Protein interactions are essential in all stages of homeostasis. 
Therefore, elaboration of these interactions provides 
unique opportunities to understand the molecular basis of 
diseases, and to develop better diagnostic and treatment 
strategies. It is crucial to characterize biochemical, physical 
and functional aspects of protein interactions (102, 103). 
Mutations that affect protein structure may cause impaired 
protein-DNA interactions, protein misfolding, new 
unwanted protein interactions, or pathogen-host protein 
interactions (9, 102). For instance, mutations in P53’s DNA-
binding domain impair its ability to bind to target DNA 
sequences, blocking several tumor suppressing mechanisms 
such as apoptosis, genetic stability etc. (102). It has already 
been demonstrated that misfolded and aggregated proteins 
may cause several diseases, either by disruption of specific 
binding abilities, formation of unwanted proteins, and/
or over-accumulation of the impaired protein (104-106). 
Viruses that can integrate their genetic material to the 
host genome such as the human papilloma virus (HPV) 
and hepatitis B virus (HBV) can initiate and/or promote 
carcinogenesis via pathogen-host protein interactions (107, 
108). 

Studies on protein interactions help to predict genotype-
phenotype associations, and new diagnostic tools can 
be created from these associations. Identifying involved 
pathways serves as a key to discover new diagnostic and 
prognostic tools. The links of diseases and proteins help 
us find key areas as potential drug targets and provide 
information for drug design (102). For example, the 
heterogeneous nuclear ribonucleoprotein (hnRNP) A2/
B1, which is an RNA matchmaker (109), has been shown 
to promote carcinogenesis, invasion and metastasis in 
pancreatic ductal adenocarcinoma, glioblastoma and lung 
cancer, but to play an inhibitory role in metastasis in breast 
cancer, making it a promising prognostic biomarker and 
a potential molecular therapeutic target for breast cancer 
(110).

EXCISION REPAIR MAP of the HUMAN GENOME at 
SINGLE NUCLEOTIDE RESOLUTION: 

“PIRI REIS MAP”

Sancar and colleagues (11) have recently mapped the sites of 
repair across the entire human genome at single nucleotide 

The delicate balance between global repair disorders that 
cause cancer development and TCR disorders that cause 
premature aging is critical in preventing both cancer and 
premature aging. The TCR system, which is still intact in 
global repair disorder, ensures cell survival and delayed 
cellular aging, but results in accumulation of DNA damage 
in the non-transcribed genes and the non-transcribed 
chain of active genes, thereby causing mutagenesis and an 
increased risk of cancer. On the other hand, cells that cannot 
be repaired by the TCR system die due to transcriptional 
stress providing a strong protection against cancer (94). 
From this point of view, the use of TCR-inhibiting or 
-blocking agents is promising as an adjunctive treatment 
approach to chemotherapy. In this way, it is thought that 
tumor cells will become more sensitive to the lethal effects 
of chemotherapy and at the same time, surviving tumor 
cells will not carry the treatment-induced mutations (95). 

Resistance to chemotherapy is an important problem 
in cancer treatment. The sensitivity to cisplatin-based 
treatments, which are commonly used in cancer 
management, has been reported to be increased in cells 
with TCR damage. It has been stated that detection of 
TCR disorders in cancer cells may be helpful in predicting 
resistance to cisplatin treatment (96). Cisplatin resistance 
is thought to be related to increased DNA repair capacity, 
P53 mutations, or loss of DNA mismatch repair capacity. 
There is evidence that reduced TCR capacity increases the 
susceptibility of tumor cells to apoptosis induced by cisplatin 
even in cell lines with p53 mutation and DNA mismatch 
defects, and that the TCR system may be a potential target 
in overcoming cisplatin resistance in cancer treatment 
(97). For example, in experimental studies in chronic 
lymphocytic leukemia (CLL), TCR inhibition, in addition 
to the treatment regimen, has been shown to induce cell 
death regardless of the previous treatment and to have 
synergistic effects with the treatment regimen, revealing 
that it is a mechanism that can be used in refractory disease 
to re-sensitize CLL cells (98, 99).

DISCOVERY of “MOLECULAR MATCHMAKERS”

Sancar and Hearst discovered “molecular matchmakers” 
while studying DNA repair mechanisms. They defined the 
“molecular matchmakers” as a class of proteins that make 
conformational (structural) changes in at least one of the 
DNA-binding protein pairs to increase the formation of the 
DNA-protein complex (9). Structural changes facilitate and 
stabilize the protein-DNA complex formation. The degree of 
change enhances the specificity and stability of the complex 
(100). The molecular matchmaker is a protein that combines 
two compatible but also solitary macromolecules with an 
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discovered by Sancar and Miyamoto (115, 116) regulate the 
circadian clock in plants and animals. Sancar (12) named 
the cryptochromes (CRY1 and CRY2) based on their 
resemblance to the plant blue light photoreceptors which 
also had sequence similarity to photolyase. In this cycle, as 
the transcriptional activators, CLOCK and BMAL1 proteins 
bind to promoters of the Cryptochrome and Period genes 
to activate their transcription, followed by the inhibition 
of CLOCK-BMAL1-activated transcription (117). The 
CLOCK – BMAL1 complex has been shown to affect up 
to 10% of the entire transcript in the circadian cycle (118). 
Loss of several tumor suppressor mechanisms caused by an 
impaired circadian rhythm has been suggested to contribute 
to carcinogenesis (119-121). Deregulated expression of 
numerous circadian cycle proteins has been found to be 
associated with poor prognosis and aggressive behavior in 
several malignancies (122-127). It has also been shown that 
single nucleotide polymorphisms in the CRY2 and CLOCK 
genes increase the risk of breast (128) and colorectal cancer 
(129).

On the other hand, whether the disruption of the circadian 
clock is a risk for cancer remains unclear due to paucity of 
supporting data from well-controlled genetic studies on 
mice (114) and the presence of findings indicating otherwise 
(130), despite the supporting evidence from experimental 
studies (131, 132). In the few limited epidemiological 
studies that investigated the relationship between circadian 
rhythm and cancer development, a higher risk of breast, 
prostate and colorectal carcinoma have been reported in 
people who work in the night shift (133-135). As of 2019, 
the International Agency for Research on Cancer (IARC) 
defines night work as “group 2A, probably carcinogenic 
to humans” based on the limited evidence on the subject 
(136). Hence, further investigation is required to fully 
elucidate the relationship between the circadian rhythm 
and carcinogenesis. 

Nevertheless, the potential use of therapeutic agents to 
re-regulate the circadian rhythm to cure human diseases 
and to develop anti-cancer drugs targeting circadian clock 
genes and proteins are still hot research topics (137-139). 
Moreover, administration of chemotherapy based on the 
circadian rhythm (“chrono-chemotherapy”) has opened 
a new era. Dysregulation of the circadian clock can affect 
cancer susceptibility by regulating DNA damage repair 
mechanisms and apoptosis. The NER mechanism has also 
been demonstrated to be regulated by the circadian rhythm. 
Sancar et al. (140) have observed that NER increased 
gradually in the morning and reached its highest level in 
the evening, and that mice exposed to UVB radiation in 

resolution using XR (excision repair) sequencing. Sancar 
refers to this map as his “Piri Reis map” (4, 65) showing 
a “new world of repair genes”, referring to Piri Reis, an 
Ottoman admiral and cartographer who drew one of the 
oldest maps of the New World. During excision repair, a 
single strand with 30 nucleotides that includes the lesion is 
removed from the DNA after dual incisions. XR-sequencing 
basically depends on capturing and sequencing this excised 
strand, allowing to create a genome-wide map of human 
excision repair at single-nucleotide resolution and provides 
valuable data about the effects of genomic position and 
chromatin status on DNA damage and repair (11). Using 
the same sequencing method, they then conducted other 
studies investigating the effects of anti-cancer drugs such 
as cisplatin on DNA damage and repair (111-113). For 
example, in a study aiming to understand DNA damage 
caused by cisplatin and its repair in the mouse liver by using 
XR-sequencing, Sancar and colleagues (111) showed that 
the repair of the transcribed strand is dominant in the first 
two days after cisplatin injection and then the repair of the 
non-transcribed strand becomes dominant, an information 
that may be useful for designing chemotherapy regimens. 
Another XR-sequencing-based study in colon cancer cell 
lines demonstrated up-regulation of membrane transport 
pathways in the oxaliplatin-resistant cells (113). Such 
studies using the XR sequencing method may provide 
an improvement in the way of illuminating the cellular 
response or resistance mechanisms to anti-cancer drugs.

ROLE of the CIRCADIAN CLOCK in 
CARCINOGENESIS and CHRONOTHERAPY:                   

A NEW APPROACH in CANCER TREATMENT, 
“CHRONOCHEMOTHERAPY”

The circadian rhythm (also called the “biological clock” 
(“circa” meaning “approximately”, “diem” meaning “day” 
in Latin) is a mechanism regulating physiological and 
metabolic events in living creatures in the form of daily 
endogenous rhythms over a 24-hour period. Although 
it demonstrates an endogenous oscillation, the circadian 
rhythm uses some signals received from the environment, 
such as light and nutrition, as determinants in the regulation 
of rhythms. The circadian clock is a universal regulatory 
system that creates daily rhythms in multiple physiological 
periods interfering with other regulatory systems and 
pathways in mammals in order to ensure the stabilization 
of homeostasis (114). It influences the physiological rhythm 
and metabolic events significantly (111). 

In humans, the circadian clock has been determined to be 
formed under four gene controls called CLOCK, BMAL1, 
Cryptochrome and Period (114). The cryptochrome genes 
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FUTURE REMARKS 
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