1) Rohrer H. Science-“Walking a Tightrope” in trust and confidence
in scientific research. Hermeren G, Sahlin K, Sahlin N, editors.
Kungl Vitterhets Historie. Sweden: Stockholm; 2013:13.
2) The Nobel Prize in Chemistry 2015. NobelPrize.org. Nobel Media
AB 2019. Sat. 14 Dec 2019.
3) Aziz Sancar – Biographical. NobelPrize.org. Nobel Media AB
2019. Sat. 14 Dec 2019.
4) Bursali O: Aziz Sancar ve Nobel’in Öyküsü. Istanbul: Kýrmýzý
Kedi Yayýnevi, 2016.
5) Sancar A, Rupert CS: Cloning of the phr gene and amplification
of photolyase in Escherichia coli. Gene. 1978;4:295-308.
6) Sancar A, Hack AM, Rupp WD. Simple method for identification
of plasmid-coded proteins. J Bacteriol. 1979;137:692-3.
7) Sancar A, Rupp WD. A novel repair enzyme: UVRABC excision
nuclease of Escherichia coli cuts a DNA strand on both sides of
the damaged region. Cell. 1983;33:249-60.
8) Sibghatullah HI, Carlton W, Sancar A: Human nucleotide
excision repair in vitro: Repair of pyrimidine dimers, psoralen
and cisplatin adducts by HeLa cell-free extract. Nucleic Acids
Res. 1989;17:4471-84.
9) Sancar A, Hearst JE. Molecular matchmakers. Science.
1993;259:1415-20.
10) Selby CP, Sancar A. Gene- and strand-specific repair in vitro:
Partial purification of a transcription-repair coupling factor. Proc
Natl Acad Sci U S A. 1991;88:8232-36.
11) Hu J, Adar S, Selby CP, Lieb JD, Sancar A. Genome-wide analysis
of human global and transcription-coupled excision repair of UV
damage at single-nucleotide resolution. Genes Dev. 2015; 29:948-60.
12) Hsu DS, Zhao X, Zhao S, Kazantsev A, Wang RP, Todo T, Wei YF,
Sancar A. Putative human blue-light photoreceptors hCRY1 and
hCRY2 are flavoproteins. Biochemistry. 1996;35:13871-7.
13) Vitaterna MH, Selby CP, Todo T, Niwa H, Thompson C, Fruechte
EM, Hitomi K, Thresher RJ, Ishikawa T, Miyazaki J, Takahashi JS,
Sancar A. Differential regulation of mammalian period genes and
circadian rhythmicity by cryptochromes 1 and 2. Proc Natl Acad
Sci U S A. 1999;96:12114-9.
14) Rupert CS, Goodgal SH, Herriott RM. Photoreactivation in vitro
of ultraviolet-inactivated Hemophilus influenzae transforming
factor. J Gen Physiol. 1958;41:451-71.
15) Rupert CS. Photoenzymatic repair of ultraviolet damage in DNA.
I. Kinetics of the reaction. J Gen Physiol. 1962;45:703-24.
16) Rupert CS. Photoenzymatic repair of ultraviolet damage in DNA.
II. Formation of an enzyme-substrate complex. J Gen Physiol.
1962;45:725-41.
17) Wulff DL, Rupert CS. Disappearance of thymine photodimer
in ultraviolet irradiated DNA upon treatment with a
photoreactivating enzyme from baker’s yeast. Biochem Biophys
Res Commun. 1962;7:237-40.
18) Sancar A, Rupert CS. Determination of plasmid molecular
weights from ultraviolet sensitivities. Nature 1978;272:471-2.
19) Sancar A. A study of photoreactivating enzyme (DNA photolyase)
of Escherichia coli, PhD Dissertation. A. Sancar, University of
Texas at Dallas, 1977.
20) Sancar GB, Smith FW, Reid R, Payne G, Levy M, Sancar A. Action
mechanism of Escherichia coli DNA photolyase. I. Formation of
the enzyme-substrate complex. J Biol Chem. 1987;262:478-85.
21) Jorns MS, Baldwin ET, Sancar GB, Sancar A. Action mechanism
of Escherichia coli DNA photolyase. II. Role of the chromophores
in catalysis. J Biol Chem. 1987;262:486-91.
22) Sancar GB, Jorns MS, Payne G, Fluke DJ, Rupert CS, Sancar
A. Action mechanism of Escherichia coli DNA photolyase. III.
Photolysis of the enzyme-substrate complex and the absolute
action spectrum. J Biol Chem. 1987;262:492-8.
23) Heelis PF, Payne G, Sancar A. Photochemical properties of
Escherichia coli DNA photolyase: Selective photodecomposition
of the second chromophore. Biochemistry. 1987;26:4634-40.
24) Payne G, Heelis PF, Rohrs BR, Sancar A. The active form of
Escherichia coli DNA photolyase contains a fully reduced flavin
and not a flavin radical, both in vivo and in vitro. Biochemistry.
1987;26:7121-7.
25) Husain I, Sancar GB, Holbrook SR, Sancar A. Mechanism of
damage recognition by Escherichia coli DNA photolyase. J Biol
Chem. 1987;262:13188-97.
26) Johnson JL, Hamm-Alvarez S, Payne G, Sancar GB,
Rajagopalan KV, Sancar A. Identification of the second
chromophore of Escherichia coli and yeast DNA photolyases as
5,10-methenyltetrahydrofolate. Proc Natl Acad Sci U S A. 1988;
85:2046-50.
27) Li YF, Sancar A. Active site of Escherichia coli DNA photolyase:
Mutations at Trp277 alter the selectivity of the enzyme without
affecting the quantum yield of photorepair. Biochemistry. 1990;
29:5698-06.
28) Li YF, Heelis PF, Sancar A. Active site of DNA photolyase:
tryptophan-306 is the intrinsic hydrogen atom donor essential
for flavin radical photoreduction and DNA repair in vitro.
Biochemistry. 1991;30:6322-9.
29) Kim ST, Heelis PF, Okamura T, Hirata Y, Mataga N, Sancar A.
Determination of rates and yields of interchromophore (folateflavin)
energy transfer and intermolecular (flavin-DNA)
electron transfer in Escherichia coli photolyase by time-resolved
fluorescence and absorption spectroscopy. Biochemistry.
1991;30:11262-70.
30) Langenbacher T, Zhao XD, Bieser G, Heelis PF, Sancar A, Michel-
Beverle EM. Substrate and temperature dependence of DNA
Photolyase repair activity examined with ultrafast spectroscopy.
J Am Chem Soc. 1997;119:10532-6.
31) Payne G, Sancar A. Absolute action spectrum of E-FADH2 and
E-FADH2-MTHF forms of Escherichia coli DNA photolyase.
Biochemistry. 1990;29:7715-27.
32) Okamura T, Sancar A, Heelis PF, Begley TP, Hirata Y, Mataga
N. Picosecond laser photolysis studies on the photorepair of
pyrimidine dimers by DNA photolyase. 1. Laser photolysis of
photolyase-2-deoxyuridine dinucleotide photodimer complex. J
Am Chem Soc. 1991;113:3143-5.
33) Kavakli IH, Sancar A. Analysis of the role of intraprotein electron
transfer in photoreactivation by DNA photolyase in vivo.
Biochemistry. 2004;43:15103-10.
34) Sancar A. Structure and function of DNA photolyase and
cryptochrome blue-light photoreceptors. Chem Rev. 2003;
103:2203-37.
35) Sancar A. Structure and function of photolyase and in vivo
enzymology: 50th anniversary. J Biol Chem. 2008; 283:32153-57.
36) Park HW, Kim ST, Sancar A, Deisenhofer J. Crystal structure of
DNA photolyase from Escherichia coli. Science. 1995;268:1866-72.
37) Boros G, Karikó K, Muramatsu H, Miko E, Emri E, Hegedűs C,
Emri G, Remenyik É: Transfection of human keratinocytes with
nucleoside-modified mRNA encoding CPD-photolyase to repair
DNA damage. Methods Mol Biol. 2016;1428:219-28.
38) Boros G, Miko E, Muramatsu H, Weissman D, Emri E, Rózsa D,
Nagy G, Juhász A, Juhász I, van der Horst G, Horkay I, Remenyik
É, Karikó K, Emri G. Transfection of pseudouridine-modified
mRNA encoding CPD-photolyase leads to repair of DNA damage
in human keratinocytes: A new approach with future therapeutic
potential. J Photochem Photobiol B. 2013;129:93-99.
39) Puig S, Granger C, Garre A, Trullas C, Sanmartin O, Argenziano
G. Review of clinical evidence over 10 years on prevention and
treatment of a film-forming medical device containing photolyase
in the management of field cancerization in actinic keratosis.
Dermatol Ther (Heidelb). 2019;9:259-70.
40) Puviani M, Barcella A, Milani M. Efficacy of a photolyase-based
device in the treatment of cancerization field in patients with
actinic keratosis and non-melanoma skin cancer. G Ital Dermatol
Venereol. 2013;148:693-8.
41) Laino L, Elia F, Desiderio F, Scarabello A, Sperduti I, Cota C,
DiCarlo A. The efficacy of a photolyase-based device on the
cancerization field: A clinical and thermographic study. J Exp
Clin Cancer Res. 2015;34:84.
42) Oudega B, Mooi FR. The use of minicells and maxicells to
detect the expression of cloned genes. In: Walker JM, Gaastra
W, editors. Techniques in molecular biology. Dordrecht:
Springer Netherlands; 1983. 239-255. Available from: https://doi.
org/10.1007/978-94-011-6563-1_13. 1983.
43) Sancar A, Sancar GB. Escherichia coli DNA photolyase is a
flavoprotein. J Mol Biol. 1984;172:223-7.
44) Sancar A, Smith FW, Sancar GB. Purification of Escherichia coli
DNA photolyase. J Biol Chem. 1984;259:6028-32.
45) Jorns MS, Sancar GB, Sancar A. Identification of a neutral
flavin radical and characterization of a second chromophore in
Escherichia coli DNA photolyase. Biochemistry. 1984; 23:2673-9.
46) Sancar A, Wharton RP, Seltzer S, Kacinski BM, Clarke ND,
Rupp WD. Identification of the uvrA gene product. J Mol Biol.
1981;148:45-62.
47) Sancar A, Clarke ND, Griswold J, Kennedy WJ, Rupp WD.
Identification of the uvrB gene product. J Mol Biol. 1981;148:63-76.
48) Sancar A, Kacinski BM, Mott DL, Rupp WD. Identification of the
uvrC gene product. Proc Natl Acad Sci U S A. 1981;78:5450-4.
49) Tabor S, Richardson CC. A bacteriophage T7 RNA polymerase/
promoter system for controlled exclusive expression of specific
genes. Proc Natl Acad Sci U S A. 1985;82:1074-8.
50) Cheah KC, Sankar S, Porter AG. Expression and processing of
human rhinovirus type 14 polypeptide precursors in Escherichia
coli maxicells. Gene. 1988;69:265-74.
51) Kay A, Mandart E, Trepo C, Galibert F: The HBV HBX gene
expressed in E. coli is recognised by sera from hepatitis patients.
Embo J. 1985;4:1287-92.
52) Baez LA. Studies on Hepatitis a Virus: I. Expression of Viral
Capsid Peptides in Escherichia Coli and Their Application for an
Immunoassay. II. Development of an Assay for Viral Detection
by Anti-Hav Antibodies [Internet]. Available from: https://
digitalcommons.lsu.edu/gradschool_disstheses. 1993.
53) Neidhardt FC, Wirth R, Smith MW, Van Bogelen R. Selective
synthesis of plasmid-coded proteins by Escherichia coli during
recovery from chloramphenicol treatment. J Bacteriol. 1980;
143:535-7.
54) Hu LT, Foxall PA, Russell R, Mobley HL. Purification of
recombinant Helicobacter pylori urease apoenzyme encoded by
ureA and ureB. Infect Immun. 1992;60:2657-66.
55) Grewal TS, Lowry PJ, Savva D. Expression and partial purification
of human pro-opiomelanocortin in Escherichia coli. J Mol
Endocrinol. 1989;3:105-12.
56) Gilbert MS, Lowry PJ, Castro MG, Woods RJ, Savva D. Expression
and partial purification of human prolactin in Escherichia coli.
Int J Biochem. 1991;23:107-14.
57) Hoffman PS, Butler CA, Quinn FD. Cloning and temperaturedependent
expression in Escherichia coli of a Legionella
pneumophila gene coding for a genus-common 60-kilodalton
antigen. Infect Immun. 1989;57:1731-9.
58) Mahalingam R, Seilhamer JJ, Pritchard AE, Cummings DJ.
Identification of Paramecium mitochondrial proteins using
antibodies raised against fused mitochondrial gene products.
Gene. 1986;49:129-38.
59) Holley MC. A simple in vitro method for raising monoclonal
antibodies to cochlear proteins. Tissue Cell. 1992;24:613-24.
60) Reardon JT, Sancar A. Nucleotide excision repair. Prog Nucleic
Acid Res Mol Biol. 2005;79:183-235.
61) Reardon JT, Sancar A. Purification and characterization of
Escherichia coli and human nucleotide excision repair enzyme
systems. Methods Enzymol. 2006;408:189-213.
62) Li W, Liu W, Kakoki A, Wang R, Adebali O, Jiang Y, Sancar
A. Nucleotide excision repair capacity increases during
differentiation of human embryonic carcinoma cells into neurons
and muscle cells. J Biol Chem. 2019;294:5914-22.
63) Choi JH, Kim SY, Kim SK, Kemp MG, Sancar A. An integrated
approach for analysis of the DNA damage response in mammalian
cells: Nucleotide excision repair, dna damage checkpoint, and
apoptosis. J Biol Chem. 2015;290:28812-21.
64) Leibeling D, Laspe P, Emmert S. Nucleotide excision repair and
cancer. J Mol Histol. 2006;37:225-38.
65) Aziz Sancar – Nobel Lecture. NobelPrize.org. Nobel Media AB
2019. Wed. 18 Dec 2019.
66) Canturk F, Karaman M, Selby CP, Kemp MG, Kulaksiz-Erkmen
G, Hu J, Li W, Lindsey-Boltz LA, Sancar A. Nucleotide excision
repair by dual incisions in plants. Proc Natl Acad Sci U S A.
2016;113:4706-10.
67) Hu J, Selby CP, Adar S, Adebali O, Sancar A. Molecular
mechanisms and genomic maps of DNA excision repair in
Escherichia coli and humans. J Biol Chem. 2017;292:15588-97.
68) Kemp MG, Sancar A. DNA excision repair: Where do all the
dimers go? Cell Cycle. 2012;11:2997-3002.
69) Hu J, Li W, Adebali O, Yang Y, Oztas O, Selby CP, Sancar A.
Genome-wide mapping of nucleotide excision repair with XRseq.
Nat Protoc. 2019;14:248-82.
70) Adar S, Hu J, Lieb JD, Sancar A. Genome-wide kinetics of DNA
excision repair in relation to chromatin state and mutagenesis.
Proc Natl Acad Sci U S A. 2016;113:E2124-33.
71) Gaddameedhi S, Kemp MG, Reardon JT, Shields JM, Smith-
Roe SL, Kaufmann WK, Sancar A. Similar nucleotide excision
repair capacity in melanocytes and melanoma cells. Cancer Res.
2010;70:4922-30.
72) Lindsey-Boltz LA, Kemp MG, Reardon JT, DeRocco V, Iyer RR,
Modrich P, Sancar A. Coupling of human DNA excision repair
and the DNA damage checkpoint in a defined in vitro system. J
Biol Chem. 2014;289:5074-82.
73) Latimer JJ, Johnson JM, Kelly CM, Miles TD, Beaudry-Rodgers
KA, Lalanne NA, Vogel VG, Kanbour-Shakir A, Kelley JL,
Johnson RR, Grant SG. Nucleotide excision repair deficiency is
intrinsic in sporadic stage I breast cancer. Proc Natl Acad Sci U S
A. 2010;107:21725-30.
74) Mort R, Mo L, McEwan C, Melton DW. Lack of involvement
of nucleotide excision repair gene polymorphisms in colorectal
cancer. Br J Cancer. 2003;89:333-7.
75) Lu B, Li J, Gao Q, Yu W, Yang Q, Li X. Laryngeal cancer risk and
common single nucleotide polymorphisms in nucleotide excision
repair pathway genes ERCC1, ERCC2, ERCC3, ERCC4, ERCC5
and XPA. Gene. 2014;542:64-8.
76) Sliwinski T, Markiewicz L, Rusin P, Kabzinski J, Dziki L, Milonski
J, Olszewski J, Blaszczyk J, Szemraj J, Majsterek I. Impaired
nucleotide excision repair pathway as a possible factor in
pathogenesis of head and neck cancer. Mutat Res. 2011;716:51-8.
77) Cipollini M, Figlioli G, Maccari G, Garritano S, De Santi C,
Melaiu O, Barone E, Bambi F, Ermini S, Pellegrini G, Cristaudo
A, Foddis R, Bonotti A, Romei C, Vivaldi A, Agate L, Molinari
E, Barale R, Forsti A, Hemminki K, Elisei R, Gemignani F, Landi
S. Polymorphisms within base and nucleotide excision repair
pathways and risk of differentiated thyroid carcinoma. DNA
Repair (Amst). 2016;41:27-31.
78) Liakos A, Lavigne MD, Fousteri M. Nucleotide excision repair:
From neurodegeneration to cancer. Adv Exp Med Biol. 2017;
1007:17-39.
79) Kulaksiz G, Sancar A. Nucleotide excision repair and cancer.
Turkish Journal of Biochemistry. 2007;32:104-111.
80) Bohr VA, Smith CA, Okumoto DS, Hanawalt PC. DNA repair in
an active gene: Removal of pyrimidine dimers from the DHFR
gene of CHO cells is much more efficient than in the genome
overall. Cell. 1985;40:359-69.
81) Mellon I, Spivak G, Hanawalt PC. Selective removal of
transcription-blocking DNA damage from the transcribed strand
of the mammalian DHFR gene. Cell. 1987;51:241-9.
82) Mellon I, Hanawalt PC. Induction of the Escherichia coli lactose
operon selectively increases repair of its transcribed DNA strand.
Nature. 1989;342(6245):95-8.
83) Selby CP, Sancar A. Transcription preferentially inhibits
nucleotide excision repair of the template DNA strand in vitro. J
Biol Chem. 1990;265:21330-6.
84) Selby CP, Witkin EM, Sancar A. Escherichia coli mfd mutant
deficient in “mutation frequency decline” lacks strand-specific
repair: In vitro complementation with purified coupling factor.
Proc Natl Acad Sci U S A. 1991;88:11574-8.
85) Selby CP, Sancar A. Mechanisms of transcription-repair coupling
and mutation frequency decline. Microbiol Rev. 1994;58:317-29.
86) Selby CP, Drapkin R, Reinberg D, Sancar A. RNA polymerase
II stalled at a thymine dimer: Footprint and effect on excision
repair. Nucleic Acids Res. 1997;25:787-93.
87) Sancar A. Mechanisms of DNA excision repair. Science.
1994;266:1954-6.
88) Huang JC, Svoboda DL, Reardon JT, Sancar A. Human nucleotide
excision nuclease removes thymine dimers from DNA by incising
the 22nd phosphodiester bond 5’ and the 6th phosphodiester
bond 3’ to the photodimer. Proc Natl Acad Sci U S A. 1992;
89:3664-8.
89) Svoboda DL, Taylor JS, Hearst JE, Sancar A. DNA repair by
eukaryotic nucleotide excision nuclease. Removal of thymine
dimer and psoralen monoadduct by HeLa cell-free extract and
of thymine dimer by Xenopus laevis oocytes. J Biol Chem. 1993;
268:1931-6.
90) Wood RD. Nucleotide excision repair in mammalian cells. J Biol
Chem. 1997;272:23465-8.
91) Kemp MG, Reardon JT, Lindsey-Boltz LA, Sancar A. Mechanism
of release and fate of excised oligonucleotides during nucleotide
excision repair. J Biol Chem. 2012;287:22889-99.
92) Lindsey-Boltz LA, Sancar A. RNA polymerase: The most specific
damage recognition protein in cellular responses to DNA
damage? Proc Natl Acad Sci U S A. 2007;104:13213-4.
93) Cleaver JE, Lam ET, Revet I. Disorders of nucleotide excision
repair: The genetic and molecular basis of heterogeneity. Nat Rev
Genet. 2009;10:756-68.
94) Marteijn JA, Lans H, Vermeulen W, Hoeijmakers JH.
Understanding nucleotide excision repair and its roles in cancer
and ageing. Nat Rev Mol Cell Biol. 2014;15:465-81.
95) Cleaver JE. Transcription coupled repair deficiency protects
against human mutagenesis and carcinogenesis: Personal
reflections on the 50th anniversary of the discovery of xeroderma
pigmentosum. DNA Repair. (Amst) 2017;58:21-8.
96) Furuta T, Ueda T, Aune G, Sarasin A, Kraemer KH, Pommier
Y. Transcription-coupled nucleotide excision repair as a
determinant of cisplatin sensitivity of human cells. Cancer Res.
2002;62(17):4899-902.
97) Stubbert LJ, Smith JM, McKay BC. Decreased transcriptioncoupled
nucleotide excision repair capacity is associated with
increased p53- and MLH1-independent apoptosis in response to
cisplatin. BMC Cancer. 2010;10:207.
98) Lohmann G, Vasyutina E, Bloehdorn J, Reinart N, Schneider JI,
Babu V, Knittel G, Crispatzu G, Mayer P, Prinz C, Muenzner JK,
Biersack B, Efremov DG, Chessa L, Herling CD, Stilgenbauer
S, Hallek M, Schobert R, Reinhardt HC, Schumacher B,
Herling M. Targeting transcription-coupled nucleotide excision
repair overcomes resistance in chronic lymphocytic leukemia.
Leukemia. 2017;31:1177-86.
99) Takagi K, Kawai Y, Yamauchi T, Iwasaki H, Ueda T. Synergistic
effects of combination with fludarabine and carboplatin depend
on fludarabine-mediated inhibition of enhanced nucleotide
excision repair in leukemia. Int J Hematol. 2011;94:378-89.
100) Pandey P, Hasnain S, Ahmad S. Protein-DNA interactions.
Ranganathan S, Nakai K, Schonbach C, editors, In:
Encyclopedia of bioinformatics and computational biology:
ABC of bioinformatics, Elsevier; 2018. 2018. DOI: https://doi.
org/10.1016/B978-0-12-809633-8.20217-3.
101) Orren DK, Selby CP, Hearst JE, Sancar A. Post-incision steps of
nucleotide excision repair in Escherichia coli. Disassembly of the
UvrBC-DNA complex by helicase II and DNA polymerase I. J
Biol Chem. 1992;267:780-8.
102) Gonzalez MW, Kann MG. Chapter 4: Protein interactions and
disease. PLoS Comput Biol. 2012;8:e1002819.
103) Ryan DP, Matthews JM. Protein-protein interactions in human
disease. Curr Opin Struct Biol. 2005;15:441-6.
104) Soto C, Estrada LD. Protein misfolding and neurodegeneration.
Arch Neurol. 2008;65:184-9.
105) Van Drie JH. Protein folding, protein homeostasis, and cancer.
Chin J Cancer. 2011;30:124-37.
106) Madden E, Logue SE, Healy SJ, Manie S, Samali A. The role of
the unfolded protein response in cancer progression: From
oncogenesis to chemoresistance. Biol Cell. 2019;111:1-17.
107) Scheffner M, Whitaker NJ. Human papillomavirus-induced
carcinogenesis and the ubiquitin-proteasome system. Semin
Cancer Biol. 2003;13:59-67.
108) Tarocchi M, Polvani S, Marroncini G, Galli A. Molecular
mechanism of hepatitis B virus-induced hepatocarcinogenesis.
World J Gastroenterol. 2014;20:11630-40.
109) Meredith EK, Balas MM, Sindy K, Haislop K, Johnson AM.
An RNA matchmaker protein regulates the activity of the long
noncoding RNA HOTAIR. Rna. 2016;22:995-1010.
110) Liu Y, Li H, Liu F, Gao LB, Han R, Chen C, Ding X, Li S, Lu
K, Yang L, Tian HM, Chen BB, Li X, Xu DH, Deng XL, Shi SL.
Heterogeneous nuclear ribonucleoprotein A2/B1 is a negative
regulator of human breast cancer metastasis by maintaining the
balance of multiple genes and pathways. EBioMedicine, 2020;
51:102583.
111) Yang Y, Liu Z, Selby CP, Sancar A. Long-term, genomewide
kinetic analysis of the effect of the circadian clock and
transcription on the repair of cisplatin-DNA adducts in the
mouse liver. J Biol Chem. 2019;294:11960-8.
112) Yimit A, Adebali O, Sancar A, Jiang Y. Differential damage and
repair of DNA-adducts induced by anti-cancer drug cisplatin
across mouse organs. Nat Commun. 2019;10:309.
113) Vaughn CM, Selby CP, Yang Y, Hsu DS, Sancar A. Genome-wide
single-nucleotide resolution of oxaliplatin-DNA adduct repair in
drug-sensitive and -resistant colorectal cancer cell lines. J Biol
Chem. 2020.
114) Sancar A, Lindsey-Boltz LA, Gaddameedhi S, Selby CP, Ye R,
Chiou YY, Kemp MG, Hu J, Lee JH, Ozturk N. Circadian clock,
cancer, and chemotherapy. Biochemistry, 2015;54:110-23.
115) Miyamoto Y, Sancar A. Vitamin B2-based blue-light
photoreceptors in the retinohypothalamic tract as the photoactive
pigments for setting the circadian clock in mammals. Proc Natl
Acad Sci U S A. 1998;95:6097-102.
116) Sancar A. Regulation of the mammalian circadian clock by
cryptochrome. J Biol Chem. 2004;279:34079-82.
117) Ye R, Selby CP, Chiou YY, Ozkan-Dagliyan I, Gaddameedhi S,
Sancar A. Dual modes of CLOCK:BMAL1 inhibition mediated
by Cryptochrome and Period proteins in the mammalian
circadian clock. Genes Dev. 2014;28:1989-98.
118) Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M,
Schultz PG, Kay SA, Takahashi JS, Hogenesch JB. Coordinated
transcription of key pathways in the mouse by the circadian
clock. Cell. 2002;109:307-20.
119) Davis K, Roden LC, Leaner VD, van der Watt PJ. The tumour
suppressing role of the circadian clock. IUBMB Life. 2019;71:771-80.
120) Gauger MA, Sancar A. Cryptochrome, circadian cycle, cell cycle
checkpoints, and cancer. Cancer Res. 2005;65:6828-34.
121) Mteyrek A, Filipski E, Guettier C, Oklejewicz M, van der Horst
GT, Okyar A, Lévi F. Critical cholangiocarcinogenesis control by
cryptochrome clock genes. Int J Cancer. 2017;140:2473-83.
122) Cadenas C, van de Sandt L, Edlund K, Lohr M, Hellwig B,
Marchan R, Schmidt M, Rahnenführer J, Oster H, Hengstler JG.
Loss of circadian clock gene expression is associated with tumor
progression in breast cancer. Cell Cycle. 2014;13:3282-91.
123) van der Watt PJ, Maske CP, Hendricks DT, Parker MI, Denny L,
Govender D, Birrer MJ, Leaner VD. The Karyopherin proteins,
Crm1 and Karyopherin beta1, are overexpressed in cervical
cancer and are critical for cancer cell survival and proliferation.
Int J Cancer. 2009;124:1829-40.
124) Yeh CM, Shay J, Zeng TC, Chou JL, Huang TH, Lai HC, Chan
MW. Epigenetic silencing of ARNTL, a circadian gene and
potential tumor suppressor in ovarian cancer. Int J Oncol.
2014;45:2101-07.
125) Yu H, Meng X, Wu J, Pan C, Ying X, Zhou Y, Liu R, Huang
W. Cryptochrome 1 overexpression correlates with tumor
progression and poor prognosis in patients with colorectal
cancer. PLoS One. 2013;8:e61679.
126) Mazzoccoli G, Colangelo T, Panza A, Rubino R, De Cata
A, Tiberio C, Valvano MR, Pazienza V, Merla G, Augello B,
Trombetta D, Storlazzi CT, Macchia G, Gentile A, Tavano F,
Vinciguerra M, Bisceglia G, Rosato V, Colantuoni V, Sabatino
L, Piepoli A. Deregulated expression of cryptochrome genes in
human colorectal cancer. Mol Cancer, 2016;15:6.
127) Habashy DM, Eissa DS, Aboelez MM. Cryptochrome-1 gene
expression is a reliable prognostic indicator in egyptian patients
with chronic lymphocytic leukemia: A prospective cohort study.
Turk J Haematol, 2018;35:168-74.
128) Hoffman AE, Zheng T, Yi CH, Stevens RG, Ba Y, Zhang Y,
Leaderer D, Holford T, Hansen J, Zhu Y. The core circadian
gene Cryptochrome 2 influences breast cancer risk, possibly by
mediating hormone signaling. Cancer Prev Res. (Phila) 2010;
3:539-48.
129) Alhopuro P, Björklund M, Sammalkorpi H, Turunen M,
Tuupanen S, Biström M, Niittymäki I, Lehtonen HJ, Kivioja T,
Launonen V, Saharinen J, Nousiainen K, Hautaniemi S, Nuorva
K, Mecklin JP, Järvinen H, Orntoft T, Arango D, Lehtonen R,
Karhu A, Taipale J, Aaltonen LA. Mutations in the circadian gene
CLOCK in colorectal cancer. Mol Cancer Res. 2010;8:952-60.
130) Ozturk N, Lee JH, Gaddameedhi S, Sancar A. Loss of
cryptochrome reduces cancer risk in p53 mutant mice. Proc Natl
Acad Sci U S A. 2009;106:2841-6.
131) Papagiannakopoulos T, Bauer MR, Davidson SM, Heimann M,
Subbaraj L, Bhutkar A, Bartlebaugh J, Vander Heiden MG, Jacks
T. Circadian Rhythm Disruption Promotes Lung Tumorigenesis.
Cell Metab. 2016;24:324-31.
132) Lee S, Donehower LA, Herron AJ, Moore DD, Fu L. Disrupting
circadian homeostasis of sympathetic signaling promotes tumor
development in mice. PLoS One. 2010;5:e10995.
133) Wegrzyn LR, Tamimi RM, Rosner BA, Brown SB, Stevens RG,
Eliassen AH, Laden F, Willett WC, Hankinson SE, Schernhammer
ES. Rotating night-shift work and the risk of breast cancer in the
nurses’ health studies. Am J Epidemiol. 2017;186:532-40.
134) Behrens T, Rabstein S, Wichert K, Erbel R, Eisele L, Arendt M,
Dragano N, Brüning T, Jöckel KH. Shift work and the incidence
of prostate cancer: A 10-year follow-up of a German populationbased
cohort study. Scand J Work Environ Health. 2017;43:560-8.
135) Papantoniou K, Devore EE, Massa J, Strohmaier S, Vetter C, Yang
L, Shi Y, Giovannucci E, Speizer F, Schernhammer ES. Rotating
night shift work and colorectal cancer risk in the nurses’ health
studies. Int J Cancer. 2018;143:2709-17.
136) IARC Monographs Vol 124 group. Carcinogenicity of night shift
work. Lancet Oncol. 2019;20:1058-9.
137) Chun SK, Chung S, Kim HD, Lee JH, Jang J, Kim J, Kim D, Son
GH, Oh YJ, Suh YG, Lee CS, Kim K. A synthetic cryptochrome
inhibitor induces anti-proliferative effects and increases
chemosensitivity in human breast cancer cells. Biochem Biophys
Res Commun. 2015;467:441-6.
138) Zhou L, Yu Y, Sun S, Zhang T, Wang M. Cry 1 regulates the clock
gene network and promotes proliferation and migration via the
Akt/P53/P21 pathway in human osteosarcoma cells. J Cancer.
2018;9:2480-91.
139) Hashiramoto A, Yamane T, Tsumiyama K, Yoshida K, Komai
K, Yamada H, Yamazaki F, Doi M, Okamura H, Shiozawa
S. Mammalian clock gene cryptochrome regulates arthritis
via proinflammatory cytokine TNF-alpha. J Immunol.
2010;184:1560-5.
140) Gaddameedhi S, Selby CP, Kaufmann WK, Smart RC, Sancar A.
Control of skin cancer by the circadian rhythm. Proc Natl Acad
Sci U S A. 2011;108:18790-5.
141) Yang Y, Adebali O, Wu G, Selby CP, Chiou YY, Rashid N, Hu
J, Hogenesch JB, Sancar A. Cisplatin-DNA adduct repair of
transcribed genes is controlled by two circadian programs in
mouse tissues. Proc Natl Acad Sci U S A. 2018;115:E4777-e85.
142) Liu KQ, Jin F, Jiang H, Wu WL, Li YY, Long JH, Luo XL, Gong
XY, Chen XX, Liu LN, Gan JY, Zhou JJ. Analysis of follow-up
results of chrono-chemotherapy or conventional chemotherapy
combined with intensity modulated radiotherapy in locally
advanced nasopharyngeal carcinoma. Zhonghua Zhong Liu Za
Zhi. 2020;42:133-8.
143) Gou XX, Jin F, Wu WL, Long JH, Li YY, Gong XY, Chen GY,
Chen XX, Liu LN. Induction chronomodulated chemotherapy
plus radiotherapy for nasopharyngeal carcinoma: A phase II
prospective randomized study. J Cancer Res Ther. 2018;14:1613-9.
144) Deshmukh J, Pofahl R, Haase I. Epidermal Rac1 regulates the
DNA damage response and protects from UV-light-induced
keratinocyte apoptosis and skin carcinogenesis. Cell Death Dis.
2017;8:e2664.
145) Friedberg EC, Bond JP, Burns DK, Cheo DL, Greenblatt MS,
Meira LB, Nahari D, Reis AM. Defective nucleotide excision
repair in xpc mutant mice and its association with cancer
predisposition. Mutat Res. 2000;459:99-108.
146) Blasiak J. DNA-damaging anticancer drugs - a perspective for
DNA repair- oriented therapy. Curr Med Chem. 2017;24:1488-
1503.
147) Poletto M, Legrand AJ, Dianov GL. DNA base excision repair:
The achilles’ heel of tumour cells and their microenvironment?
Curr Pharm Des. 2017;23:4758-72.
148) https://media.nationalgeographic.org/assets/file/breakthrough_
quote_4.pdf Access date: 19 Dec 2019.
149) AbdullGaffar B. Nobel prize and surgical pathology. Adv Anat
Pathol. 2017;24:110-1.
150) https://4kyws.ua.edu/GAPOSCHKIN.html Access date: 18 Dec
2019.
151) Sancar A, Reardon JT. Nucleotide excision repair in E. coli and
man. Adv Protein Chem. 2004;69:43-71.